Form 2D Instructions

Form 2D must be completed in conjunction with EPA Form 3510-1 (Form 1)

This form must be completed by all applicants who checked "yes" to Item II-D in Application Form 1. However, facilities which discharge only nonprocess wastewater that is not regulated by an effluent limitations guideline or new source performance standard may use EPA Form 3510-2E (Form 2E). Educational, medical, and commercial chemical laboratories should use this form or EPA Form 3510-2C (Form 2C). to further determine if you are a new source or a new discharger, see §122.2 and §122.29. This form should not be used for discharges of stormwater runoff.

Public Availability of Submitted Information

You may not claim as confidential any information required by this form or Form 1, whether the information is reported on the forms or in an attachment. Section 402(j) of the CWA requires that all permit applications shall be available to the public. This information will therefore be made available to the public upon request.

You may claim as confidential any information you submit to EPA which goes beyond that required by this form and Form 1. Confidentiality claims for effluent data must be denied. If you do not assert a claim of confidentiality at the time of submitting the information, EPA may make the information public without further notice. Claims of confidentiality will be handled in accordance with EPA's business confidentiality regulations in 40 CFR Part 2.

Completeness

Your application will not be considered complete unless you answer every question on this form and on Form 1 (except as instructed below). If an item does not apply to you, enter "NA" (for "not applicable") to show that you considered the question.

Follow-up Requirements

Although you are now required to submit estimated data on this form (Form 2D), please note that no later than two years after you begin discharging from the proposed facility, you must complete and submit Items V and VI of NPDES application Form 2C (EPA Form 3510-2C). However, you need not complete those portions of Item V requiring tests which you have already performed under the discharge monitoring requirements of your NPDES permit. In addition, the permitting authority may waive requirements of Items V-A and VI if the permittee makes the demonstrations required under 40 CFR §122.22(g)(7)(i)(B) and 122.21(g)(9).

Definitions

All significant terms used in these instructions and in the form are defined in the glossary found in the General Instructions which accompany Form 1.

Item I

You may use the map you provided for Item XI of Form 1 to determine the latitude and longitude (to the nearest 15 seconds) of each of your outfalls and the name of the receiving water. You should name all waters to which discharge is made and which flow into significant receiving waters. For example, if the discharge is made to a ditch which flows into an unnamed tributary which in turn flows into a named river, you should provide the name or description (if no name is available) of the ditch, the tributary, and the river.

Item II

This item requires your best estimate of the data on which your facility or new outfall will begin to discharge.

Item III-A

List all outfalls, their source (operations contributing to the flow), and estimate an average flow from each source. Briefly describe the planned treatment for these wastewaters prior to discharge. Also describe the ultimate disposal of any solid or liquid wastes not discharged. You should describe the treatment in either a narrative form or list the proper code for the treatment unit from a list provided in Table 2D-1.

Item III-B

An example of an acceptable line drawing appears in Figure 2D-1 to these instructions. The line drawing should show the route taken by water in your proposed facility from intake to discharge. Show all sources of wastewater, including process and production areas, sanitary flows, cooling water, and storm water runoff. You may group similar operations into a single unit, labeled to correspond to the more detailed listing in Item III-A. The water balance should show estimates of anticipated average flows. Show all significant losses of water to production, atmosphere, and discharge. You should use your best estimates.

Item III-C

Fill in every applicable column in this item for each source of intermittent or seasonal discharge. Base your answers on your best estimate. A discharge is intermittent if it occurs with interruptions during the operating hours of the facility. Discharges caused by routine maintenance shutdowns, process changes, or other similar activities are not considered to be intermittent. A discharge is seasonal if it occurs only during certain parts of the year. The reported flow rate is the highest daily value and should be measured in gallons per day. Maximum total volume means the total volume of any one discharge within 24 hours and is measured in units such as gallons.

Item IV

"Production" in this question refers to those goods which the proposed facility will produce, not to "wastewater" production. This information is only necessary where production-based new source performance standards (NSPS) or effluent guidelines apply to your facility. Your estimated production figures should be based on a realistic projection of actual daily production level (not designed capacity) for each of the first three operating years of the facility. This estimate must be a long-term-average estimate (e.g., average production on an annual basis). If production will vary depending on long-term shifts in operating schedule or capacity, the applicant may report alternate production estimates and the basis for the alternate estimates.

If known, report quantities in the units of measurement used in the applicable NSPS or effluent guideline. For example, if the applicable NSPS is expressed as "trams of pollutant discharged per kilogram of unit production," then report maximum "Quantity Per Day" in kilograms. If you do not know whether any NSPS or effluent guideline applies to your facility, report quantities in any unit of measurement known to you. If an effluent guideline or NSPS specifies a method for estimating production, that method must be followed.

There is no need to conduct new studies to obtain these figures; only data already on hand are required. You are not required to indicate how the reported information was calculated.

Items V-A, B, and C

These items require you to estimate and report data on the pollutants expected to be discharged from each of your outfalls. Where there is more than one outfall, you should submit a separate Item V for each outfall. For Part C only a list is required. Sampling and analysis are not required at this time. If, however, data from such analyses are available, then those data should be reported. Each part of this item addresses a different set of pollutants or parameters and must be completed in accordance with the specific instructions for that part. The following are the general and specific instructions for Items V-A through V-C.

Item V - General Instructions

Each part of this item requires you to provide an estimated maximum daily and average daily value for each pollutant or parameter listed (see Table 2D-2), according to the specific instructions below. The source of the data is also required.

For parts A through C, base your determination of whether a pollutant will be present in your discharge on your knowledge of the proposed facility's raw,

materials, maintenance chemicals, intermediate and final products, byproducts, and any analyses of your effluent or of any similar effluent. You may also provide the determination and the estimates based on available inhouse or contractor's engineering reports of any other studies performed on the proposed facility (see Item VI of the form). If you expect a pollutant to be present solely as a result of its presence in your intake water, please state this information on the form.

Please note that no later than 2 years after you begin discharging from the proposed facility, you must complete and submit Items V and VI of NPDES application Form 2C (follow-up data).

Reporting Intake Data. You are not required to report pollutants or parameters present in intake water unless you wish to demonstrate your eligibility for a "net" effluent limitation for these pollutants or parameters, that is, an effluent limitation adjusted to provide allowance for the pollutants or parameters present in your intake water. If you wish to obtain credits for pollutants or parameters present in your intake water, please insert a separate sheet, with a short statement of why you believe you are eligible [see §122.45(g)], under Item VII (Other Information). You will then be contacted by the permitting authority for further instructions.

All estimated pollutant or parameter levels must be reported as concentration and as total mass, except for discharge flow, temperature, and pH. Total mass is the total weight of pollutants or parameters discharged over a day.

Use the following abbreviations for units:

Concentration	Mass
ppmparts per million	lbspounds
mg/1milligrams per liter	tontons (English tons)
ppbparts per billion	mgmilligrams
Ug/1micrograms per liter	ggrams
kgkilograms	TTonnes (metric tons)

Source

In providing the estimates, use the codes in the following table to indicate the source of such information in column 4 of Parts V - A and - B.

Code	
Engineering study	1
Actual data from pilot plants	
Estimates from other engineering studies	
Data from other similar plants	3
Best professional estimates	4
Others	specify on the form

Item V-A

Estimates of data on pollutants or parameters in Group A must be reported by all applicants for all outfalls,

outfalls containing only noncontact cooling water or nonprocess wastewater.

To request a waiver from reporting any of these pollutants or parameters, the applicant must submit tot he permitting authority a waritten request specifying which pollutants or parameters should be waived and the reasons for requesting such a waiver. This request should be submitted to the permitting authority before or with the permit application. The permitting authority may waive the requirements for information about these pollutants or parameters if he or she determines that less stringent reporting requirements are adequate to support issuance of the permit. No extensive documentation will normally be needed, but the applicant should contact the permitting authority if she or he wishes to receive instructions on what his or her particular request should contain.

Item V-B

Estimates of data on pollutants in Group B must be reported by all applicants for all outfalls, including outfalls containing only noncontact cooling water or nonprocess wastewater. You are merely required to report estimates for those pollutants which you know or have reason to believe will be discharged or which are limited directly by an effluent limitations guideline (or NSPS) or indirectly through promulgated limitations on an indicator pollutant. The priority pollutants in Group B are divided into the following three sections:

- Metal toxic pollutants, total cyanide, and total phenols
- 2) 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD) (CAS # 1764-016)
- Organic Toxic Pollutants (Gas Chromatography/-Mass Spectrometry Fractions)
 - a) Volatile compounds
 - b) Acid compounds
 - c) Base/neutral compounds
 - d) Pesticides

For pollutants listed in Sections 1 and 3, you must report estimates as instructed above.

For Section 2, you are required to report that TCDD may be discharged if you will use or manufacture one of the following compounds, or if you know or have reason to believe that TCDD is or may be present in an effluent:

- A. 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) (CAS # 93-765);
- B. 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4, 5TP) (CAS # 93-72-I);
- C. 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) (CAS # 136-25-4);
- D. 0,O-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel) (CAS # 299-84-3);

- E. 2,4,5-trichlorophenol (TCP) (CAS # 95-95-4); or
- F. Hexachlorophene (HCP) (CAS # 70-30-4)

Small Business Exemption

If you are a "small business," you are exempt from the reporting requirement for Item V-B (section 3). You may qualify as a "small business" if you fit one of the following definitions:

- 1) Your expected gross sales will total less than \$100,000 per year for the next three years, or
- 2) in the case of coal mines, your average production will be less than 100,000 tons of coal per year.

If you are a "small business," you may submit projected sales or production figures to qualify for this exemption. The sales or production figures you submit must be for the facility which is the source of the discharge. The data should not be limited only to production or sales for the process or processes which contribute to the discharge, unless those are the only processes at your facility. For sales data, where intracorporate transfers of goods and services are involved, the transfer price per unit should approximate market prices for those goods and services as closely as possible. If necessary, you may index your sales figures to the second quarter of 1980 to demonstrate your eligibility for a small business This may be done by using the gross exemption. national product price deflator (second quarter of 1980 = 100), an index available in "National Income and Product Accounts of the United States" (Department of Commerce, Bureau of Economic Analysis).

The small business exemption applies to the GC/MS fractions (Section 3) of Item V-B only. Even if you are eligible for a small business exemption, you are still required to provide information on metals, cyanide, total phenols, and dioxin in Item V-B, as well as all of Items V-A and C.

Item V-C

List any pollutants in Table 2D-3 that you believe will be present in any outfalls and briefly explain why you believe they will be present. No estimate of the pollutant's quantity is required, unless you already have quantitative data.

Note: The discharge of pollutants listed in Table 2D-4 may subject you to the additional requirements of section 311 of the CWA (Oil and Hazardous Substance Liability). These requirements are not administered through the NPDES program. However, if you wish an exemption under 40 CFR 117.12(a)(2) from these requirements, attach additional sheets of paper to this form providing the following information:

A. The substance and the amount of each substance which may be discharged;

- B. The origin and source of the discharge of the substance:
- C. The treatment which is to be provided for the discharge by:
 - An onsite treatment system separate from any treatment system which will treat your normal discharge,
 - A treatment system designed to treat your normal discharge and which is additionally capable of treating the amount of the substance identified under paragraph 1 above, or
 - 3. Any combination of the above.

An exemption from the section 311 reporting requirements pursuant to 40 CFR Part 117 for pollutants on Table 2D does not exempt you from the section 402 reporting requirements pursuant to 40 CFR Part 122 (Item V-C) for pollutants listed on Table 2D-3.

For further information on exclusions from Section 311, see 40 CFR Section 117.12(a)(2) and (c), or contact your EPA Regional Office (Table 1 in the Form 1 instructions).

Item VI-A

If an engineering study was conducted, check the box labeled "report available." If no study was done, check the box labeled "no report."

Item VI-B

Report the name and location of any existing plant(s) which (to the best of your knowledge) resembles your planned operation with respect to items produced, production process, wastewater constituents, or wastewater treatment. No studies need to be conducted to respond to this item. Only data which are already available need be submitted.

This information will be used to inform the permit writer of appropriate treatment methods and their associated permit conditions and limits.

Item VII

A space is provided for additional information which you believe would be useful in setting permit limits, such as additional sampling. Any response is optional.

Item VIII

The Clean Water Act provides for severe penalties for submitting false information on this application form.

Section 309(c)(2) of the Clean Water Act provides that "Any person who knowingly makes any false statement, representation, or certification in any application, . . .shall upon conviction, be punished by a fine of no more than \$10,000 or by imprisonment for not more than six months, or both."

40 CFR Part 122.22 Requires the Certification To Be Signed as Follows:

- A. For a corporation: by a responsible corporate officer
 - A responsible corporate officer means (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25,000,000 (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
- B. For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or
- C. For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).

PHYSICAL TREATMENT PROCESSES

1-AAmmonia Stripping	1-M	Grit Removal			
1-BDialysis		Microstraining			
1-CDiatomaceous Earth Filtration	1-0				
1-DDistillation	1-P	Moving Bed Filters			
1-EElectrodialysis		Multimedia Filtration			
1-FEvaporation		Rapid Sand Filtration			
1-GFlocculation		Reverse Osmosis (Hyperfiltration)			
1-HFlotation	1-T				
1-IFoam Fractionation	1-11	Sedimentation (Settling)			
1-JFreezing	1-\/	Slow Sand Filtration			
1-KGas-Phase Separation	1_\\/	Solvent Extraction			
1-LGrinding (Comminutors	1-X				
1-LGlinding (Comminators	ι-λ	301711011			
CHEMICAL TREAT	MENT PRO	CESSES			
2-ACarbon Adsorption	2 C	Disinfection (Ozone)			
2-BChemical Oxidation		Disinfection (Ozone)			
2-CChemical Oxidation		Electrochemical Treatment			
2-DCoagulation		lon Exchange			
2-EDechlorination		Neutralization			
2-FDisinfection (Chlorine)	2-K				
2-FDisinfection (Chionne)	2-L	Reduction			
BIOLOGICAL TREATMENT PROCESSES					
3-A Activated Sludge	3-F	Preaeration			
3-AActivated Sludge		Preaeration			
3-BAerated Lagoons	3-F	Spray Irrigation/Land Application			
3-BAerated Lagoons 3-CAnaerobic Treatment	3-F 3-G	Spray Irrigation/Land ApplicationStabilization Ponds			
3-BAerated Lagoons	3-F 3-G	Spray Irrigation/Land Application			
3-BAerated Lagoons 3-CAnaerobic Treatment 3-DNitrification-Denitrification	3-F 3-G	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration			
3-B	3-F 3-G 3-H ROCESSES	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated Effluent			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated EffluentUnderground Injection			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated EffluentUnderground Injection			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated EffluentUnderground Injection			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated EffluentUnderground Injection AL PROCESSESHeat Drying			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated EffluentUnderground Injection AL PROCESSESHeat DryingHeat Treatment			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling FiltrationReuse/Recycle of Treated EffluentUnderground Injection AL PROCESSESHeat DryingHeat TreatmentIncineration			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSESHeat DryingHeat TreatmentIncinerationLand Application			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSESHeat DryingHeat TreatmentIncinerationLand ApplicationLandfill			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSES Heat DryingHeat TreatmentIncinerationLand ApplicationLandfillPressure Filtration			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSES Heat DryingHeat TreatmentIncinerationLand ApplicationLandfillPressure FiltrationPyrolysis			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSES Heat DryingHeat TreatmentIncinerationLand ApplicationLand FillPressure FiltrationPyrolysisSludge Lagoons			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSES Heat DryingHeat TreatmentIncinerationLand ApplicationLand FiltrationPyrolysisSludge LagoonsVacuum Filtration			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSES Heat DryingHeat TreatmentIncinerationLand ApplicationLand FiltrationPyrolysisSludge LagoonsVacuum FiltrationVibration			
3-B	3-F	Spray Irrigation/Land ApplicationStabilization PondsTrickling Filtration Reuse/Recycle of Treated EffluentUnderground Injection AL PROCESSES Heat DryingHeat TreatmentIncinerationLand ApplicationLand FiltrationPyrolysisSludge LagoonsVacuum Filtration			

GROUP A

Biochemical Oxygen Demand (BOD) Chemical Oxygen Demand (COD Total Organic Carbon (TOC) Total Suspended Solids (TSS) Flow

Ammonia (as N) Temperature (winter) Temperature (summer) pН

GROUP B

Bromide

Total Residual Chlorine

Color

Fecal Coliform Fluoride Nitrate-Nitrite (as N)

Oil and Grease

Phosphorus (as P) Total

Radioactivity

(1) Alpha, Total

(2) Beta, Total

(3) Radium, Total

(4) Radium 226, Total

Sulfate (as SO₄) Sulfide (as S) Sulfite (as SO₃) Surfactants Aluminum, Total Barium, Total Boron, Total Cobalt, Total Iron, Total

Magnesium, Total Molybdenum, Total Manganese, Total

Tin, Total Titanium, Total

Section 1

Antimony, Total Beryllium, Total Chromium, Total Lead. Total Nickel, Total Silver, Total Zinc. Total Phenols, Total

Arsenic, Total Cadmium, Total Copper, Total Mercury, Total Selenium, Total Thallium, Total Cyanide, Total

Section 2

2,3,7,8,Tetrachlorodibenzo-P-Dioxin

GC/MS FRACTION* - VOLATILE COMPOUNDS

Arcolein Benzene Carbon Tetrachloride Chlorodibramomethane 2-Chloroethylvinyl Ether Dichlorobomomethane 1.2-Dichloroethane 1,2-Dichloropropane Ethylbenzene Methyl Chloride

1,1,2,2-Tetrachloroethane

Toluene

1,1,1-Trichloroethane Trichloroethylene

Vinyl Chloride Acrylonitirile Bromoform Chlorobenzene Chloroethane Chloroform

1.1-Dichloroethane 1,1-Dichloroethane 1,3-Dichloropropylene Methyl Bromide

Methylene Chloroethane Tretrachloroethylene

1,2-Trans-Dichloroethylene 1,1,2-Trichloroethane

GS/MS FRACTION -ACID COMPOUNDS

2-Chlorophenol 2,4-Dimethylphenol 2,4-Dinitro-phenol 4-Nitrophenol pentachlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 4,6-Dinitro-O-Cresol 2-Nitrophenol P-Chloro-M-Cresol

Phenol

GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS

Acenaphthene Anthracene

Benzo (a) Anthracene 3,5-Benzofluoranthene Benzo (k) Fluoranthene Bis (2-Chloroethyl) Ether Bis Bis (2-Ethylhexyl) Phthalate **Butyl Benzyl Phthalate** 4-Chlorophenyl Phenyl Ether Dibenzo (a,h) Anthracene 1.3-Dichlorobenzene 3.3-Dichlorobenzidine Dimethyl Phthalate 2.4-Dinitrotoluene Di-N-Octyl Phthalate Fluoranthene

Hexachlorobenzene

Hexachlorocyclopentadiene Indeno (1,2,3-cd) Pyrene

Naphthalene

N-Nitro-soldimethylamine N-Nitro-sodiphenylamine

Pyrene

Acenaphtylene Benzidine

Benzo (a) Pyrene Benzo (ghi) Perylene

Bis (2 Chloroethoxy) Methane (2-Chloroisopropyl) Ether 4-Bromophenyl Phenyl Ether

2-Chloronaphthalene

Chrysene

1,2-Dichlorobenzene 1.4-Dichlorobenzene Diethyl Phthalate Di-N-Butyl Phthalate 2.6-Dinitrotoluene

1,2, Diphenylhydrazine (as Azobenzen)

Fluorene

Hexachlorobutadiene Hexachloroethane Isophorone Nitrobenzene

N-Nitrosodi-N-Propylamine

Phenanthrene

1.2.4-Trichlorobenzene

GC/MS FRACTION - PESTICIDES

Aldrin Alpha-BHC Beta-BHC 4,4' DDT 4,4'-DDD

Alpha-Endosulfan Endosulfan Sulfate Endrin Aldehvde Heptachlor Epoxide

PCB-1254 PCB-1232 PCB-1260 Toxaphene

*fractions defined in40 CFR Part 136

Gamma-BHC Delta-BHC Chlordane 4.4' DDE Dieldrin

Beta-Endosulfan

Endrin Heptachlor PCB-1242 PCB-1221 PCB-1248 PCB-1016

TOXIC POLLUTANTS AND HAZARDOUS SUBSTANCES REQUIRED TO BE IDENTIFIED BY APPLICANTS IF EXPECTED TO BE PRESENT

TOXIC POLLUTANT

Asbestos

HAZARDOUS SUBSTANCES

Aceltaldehyde
Allyl alcohol
Allyl chloride
Amyl acetate
Aniline
Benzonitrile
Benzyl chloride
Butyl acetate
Butylamine
Captan
Carbaryl
Carbofuran
Carbon disulfide
Chlorpyrifos
Coumpahos

Crotonaldehyde Cyclohexane

Cresol

2,4-D (2,4-Dichlorophinoxyacetic acid)

Diazinon Dicamba Dichlobenil Dichlone

2,2 Dichloropropionic acid

Dichlorvos
Diethyl amine
Dimethyl amine
Dintrobenzene

Diquat
Disulfoton
Diuron

Epichlorohydrin

Ethion

Ethylene diamine Formaldehyde Furfural

Guthion Isoprene

Isopropanolamine dodecylbenzenesulfonate

Kelthane Kepone Malathion

Mercaptodimethur Methoxychlor

HAZARDOUS SUBSTANCES

Methyl mercaptan Methyl methacrylate Methyl parathion Mevinphos Mexacarbate Monoethyl amine Monomethyl amine

Naled
Naphthenic acid
Nitrotoluene
Parathion
Phenolsufonate
Phosgene
Propargite
Propylene oxide
Pyrethrins
Quinoline
Resorcinol

Quinoline Resorcinol Strontium Strychnine

2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)

TDE (Tetrochlorodiphenyl ethane

2,4,5-TP [2-(2,4,5-Trichlorophenoxy) propanic acid]

Trichlorofon

Triethylamine

Triethanolamine dodecylbenzenesulfonate

Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium

HAZARDOUS SUBSTANCES

Endrin

Lindane

Epichlorohydrin

Dichlorvos Acetaldehyde Butylamine Dieldrin Butyric acid Acetic acid Diethylamine Acetic anhydride Cadmium acetate Dimethylamine Acetone cyanohydrin Cadmium bromide Dinitrobenzene Acetyl bromide Cadmium chloride Dinirophenol Acetyl chloride Calcium arsenate Dinitrotoluene Acrolein Calcium arsenite Diquat Acrylonitrile Calcium carbide Disulfoton Adipic acid Calcium chromate Diuron Aldrin Calcium cyanide Dodecylbenzesulfonic acid

Allyl alcohol Calcium dodecylbenzenesulfonate Endosulfan

Alyll chloride Calcium hypochlorite

Aluminum sulfate Captan Carbarvl Ammonia

Ethion Carbofuran Ammonium acetate Ethylbenzene Carbon disulfide Ammonium benzoate Ethylenediamine Carbon tetrachloride

Ammonium bicarbonate Ethylene dibromide Ammonium bichromate Chlordane Ethylene dichloride Ammonium bifluoride Chlorine Ethylene diaminetetracetic acid Ammonium bisulfite Chlorobenzene

(EDTA) Ammonium carbamte Chloroform Ferric ammonium citrate Ferric ammonium exalate Chloropyrifos Ammonium carbonate

Chlorosulfonic acid Ferric chloride Ammonium chloride Ferric fluoride Ammonium chromate Chromic acetate Ferric nitrate Ammonium citrate Chromic acid Ferric sulfate Ammonium flouroborate Chromic sulfate Ferrous chloride Chromous chloride Ammonium fluoride Ferrous sulfate Ammonium hydroxide Cobaltous bromide Formaldehyde Ammonium oxalate Cobaltous formate Formic acid Ammonium silicofluoride Cobaltous sulfamate Fumaric acid

Ammonium sulfamate Coumaphos **Furfural** Ammonium sulfide Cresol Guthion Ammonium silfite Crotonaldehyde Heptachlor Cupric acetate Ammonium tartrate

Hexachlorocyclopentadiene Ammonium thiocvanate Cupric acetoarsenite Hvdrochloric acid Ammonium thisulfate Cupric chloride Hydrofluoric acid

Amyl acetate Cupric nitrate Hydrogen cyanide Aniline Cupric oxalate Hydrogen sulfide Antimony pentachloride Cupric sulfate

Isoprene

Cupric sulfate ammoniated Antimony potassium tartrate Isopropanolamine Antimony tribromide Cupric tartrate

dodecylbenzenesulfonate Antimony trichloride Cyanogen chloride Kelthane Antimony trifluoride Cyclohexane Kepone

Antimony trioxide 2,4-D acid (2,4-Dichlorophenoxyacetic Lead acetate Lead arsenate Arsenic disulfide acid esters)

Lead chloride Barium cyanide DDT Lead fluoborate Benzene Diazinon Lead fluorite Benzoic acid Dicamba Lead iodide Benzonitrite Dichlobenil Lead nitrate Benzoyl chloride Dichlone Lead stearate Benzyl chloride Dichlorobenzene Lead sulfate Beryllium chloride Dichloropropane Lead sulfide Beryllium fluoride Dichloropropene

Lead thiocyanate Beryllium nitrate Dichloropropene-Dichloropropane mix

2.2-Dichloropropionic acid Butylacetate Lithium chromate

n-Butylphthalate Malathion

HAZARDOUS STUBSTANCES (Continued)

Maleic acid
Maleic anhydride
Mercaptodimethur
Mercuric cyanide
Mercuric nitrate
Mercuric sulfate
Mercuric thiocyanate
Mercurous nitrate
Mercurous nitrate
Methoxychlor
Methyl methacrylate
Methyl parathion

Methyl parathion Mevinphos Mexacarbate Monethylamine Monomethylamine

Naled Naphthalene Naphthenic acid

Nickel ammonium sulfate

Nickel chloride
Nickel hydroxide
Nickel nitrate
Nickel sulfate
Nitric acid
Nitrobenezene
Nitrogen dioxide
Nitrophenil
Nitrotoluene
Paraformaldehyde

Parathion

Pentachlorophenol

Phenol Phosoene Phosphoric acid Phosphorus

Phosphorus oxychloride Phosphorus pentasulfide Phosphorus trichloride

Polychlorinated biphenyls (PCB)

Potassium arsenate
Potassium arsenite
Potassium bichromate
Potassium cyanide
Potassium hydroxide
Potassium permanganate

Propargite
Propionic acid
Propionic anhydride
Propylene oxide
Pyrethrins
Quinoline
Resorcinol
Selenium oxide

Sodium Sodium arsenate Sodium arsenite Sodium bichromate

Silver nitrate

Sodium bifluoride Sodium bisulfite Sodium chromate Sodium cyanide

Sodium dodecylbenzenesulfonate

Sodium fluoride Sodium hydrosulfide Sodium hydroxide Sodium hypochlorite Sodium methylate Sodium nitrate

Sodium phospate (dibasic)
Sodium phosphate (tribasic)

Sodium selenite Strontium chromate

Strychnine Styrene Sulfuric acid

Sulfur monochloride

2,4,5-T acid (2,4,5-Trichlorophenoxy

acetic acid)

2,4,5-Tamines (2,4,5-Trichlorophenoxy

acetic acid amines)

2,4,5-T esters (2,4,5-Trichlorophenoxy

propanoic acid)

2,4,5-TP acid esters (2,4,5-

Trichlorophenoxy propanoic acid

esters)

TDE (Tetrachlorodiphenyl ethane)

Tetraethyl lead

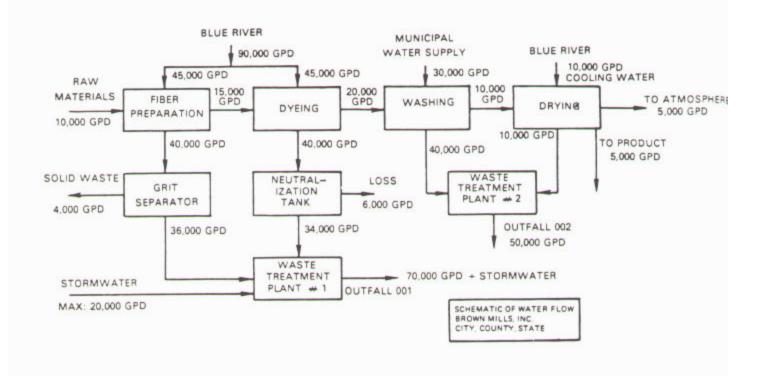
Tetraethyl pyrophosphate

Thallium sulfate

Toluen
Toxaphene
Trichlorofon
Trichloroethylene
Trichlorophenol
Triethanolamine

dodecylbenzenesulfonate

Triethylamine
Trimethylamine
Uranyl acetate
Uranyl nitrate
Vanadium pentoxide
Vanadyl sulfate
Vinyl acetate
Vinylidene chloride


Xylene Xylenol Zinc acetate Zinc ammonium chloride

Zinc borate
Zinc bromide
Zinc carbonate
Zinc chloride
Zinc cyanide
Zinc fluoride
Zinc formate
Zinc hydrosulfite
Zinc nitrate

Zinc phenolsulfonate Zinc phosphide Zinch silicofluoride Zinc sulfate Zirconium nitrate

Zirconium potassium fluoride

Zirconium sulfate
Zirconium tetrahloride

EPA ID Number (Copy from Item 1 of Form 1)

Form Approved OMB No. 2040-0086 Approval expires 7-31-88

2D NPDES	9	EP/	4	Appli	catio				New Dischargers harge Process Wastewate	r
I. Outfall Loc	ation									
	outfall, I		itude and	d longitud			ne of the	receiving water		
Outfall Number (list)	Deg	Latitude Min	Sec	Deg	Longit Mii		Sec	Receiving Water	(name)	
rumber (nay	Dog	141111	000	Dcg	17111		000			
II. Discharge		-				•				
III. Flows, So										
									astewater to the effluent, including ter runoff; (2) the average flow	
									stewater. Continue on additional	
sheets	if neces	sary.		. ,				•		
Outfall Number	1.	Operatio	ns Contribu (list)	uting Flow				erage Flow de units)	3. Treatment (Description of list Codes from Table 2D-	- 1)
Trainion			(not)				(ii ioia	ao armoj	(Bosonphorrornat Goddonom rasio 2B	'/

B.	contrib descrip intakes mining	outing wastew ptions in Item s, operations, g activities), p	vater to the e III-A. Constru treatment unit	water flow through the ffluent, and treatmer uct a water balance ots, and outfalls. If a rial description of the	nt units labeled in the line drawing water balance ca	to correspond g by showing a nnot be detern	to the more verage flows inned (e.g., for	detailed between r certain
C.		t for storm runnal?		pills, will any of the dis	scharges describe	d in Item III-A b	e intermittent o	or
			oroto are remorning	1. Fred			2. Flow	
		Outfall Number		a. Days Per Week (specify average)	b. Months Per Year (specify) average)	a. Maximum Daily Flow Rate (in mgd)	b. Maximum Total Volume (specify with units)	c. Duration (in days)
If the process ope	duction le	applicable produ	d), expressed in the	ent guideline or NSPS, for e terms and units used in th y also submit alternative est	e applicable effluent g	guideline or NSPŚ, rate sheet).	for each of the fire	on of actual st 3 years of
			L.					

CONTINUED FROM THE FRONT	EPA ID Number (cop	from Item 1 of Form 1)	Outfall Number
V. Effluent Characteristics			
A and B: These items require you to be discharged from each of your out	tfalls. Each part of the specific instruc	this item addresses ction for that part.	centration and mass) of the pollutants to sa different set of pollutants and should Data for each outfall should be on a
General Instructions (See Table 2L			
the source of information. Data for the permitting authority. For all outfa	all pollutants in Gralls, data for pollutanited directly by an	roup A, for all outfall ants in Group B shou effluent limitations	n and average for certain pollutants and ls, must be submitted unless waived by uld be reported only for pollutants which guideline or NSPS or indirectly through
1. Pollutant	2. Maximum Daily Value	3. Average Daily Value	4. Source (see instructions)
	(include units)	(include units)	
	i 		
	1	1	

CONTINUED FROM THE FRONT EP	PA ID Number (cop from Item 1 of Form 1)
	e pollutants listed in Table 2D-3 of the instructions which you know or have rom any outfall. For every pollutant you list, briefly describe the reasons you
1. Pollutant	2. Reason for Discharge
VI. Engineering Report on Wastewater Treatn	nent
	your wastewater treatment, including engineering reports or pilot plant studies, check the No Report
	any existing plant(s) which, to the best of your knowledge, resembles this duction processes, wastewater constituents, or wastewater treatments.
Name	Location Location

EPA ID Number (cop from Item 1 of Form 1) VII. Other Information (Optional) Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other information you feel should be considered in establishing permit limitations for the proposed facility. Attach additional sheets if necessary. VIII. Certification I Certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A. Name and Official Title (type or print) B. Phone No.

C. Signature

D. Date Signed